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Experimental observation of noise-induced sensitivity to small
signals in a system with on-off intermittency

O.V. Gerashchenkoa, S.L. Ginzburg, and M.A. Pustovoit

Petersburg Nuclear Physics Institute, Gatchina Leningrad district 188350, Russia

Received 21 May 1999 and Received in final form 28 December 1999

Abstract. An experimental (electronic circuit) realization and analytic studies of overdamped Kramers
oscillator with an exponential nonlinearity under combined effect of a large multiplicative noise and a small
periodic signal were performed. Under certain conditions, when the system exhibits on-off intermittency,
it becomes sensitive to very small periodic signals, amplifying them greatly.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 84.30.-r Electronic circuits

1 Introduction

The role of noise in physical systems in last two decades
was subjected a substantial reassessment induced by dis-
covery of numerous interesting phenomena caused by it.
Up to now, it is known that in nonlinear systems noise can
induce phase transitions [1], complex ordered patterns [2]
directed transport of matter [3], as well as facilitate trans-
duction of external signal [4], waves [5] and enhance dif-
fusion [6] in the system.

The next example of constructive role of noise (or, as
it is called in [7], noise-induced ordering) is the noise-
induced hypersensitivity to small time-dependent signals
recently found by us analytically and numerically [8] in
a Kramers oscillator with multiplicative white noise. Un-
der effect of large parametric noise the system was able
to amplify an ultrasmall (of the order of, e.g., 10−20) de-
terministic ac signal up to the value of the order of unity.
Such an anomalous sensitivity in the system is a result of
on-off intermittency [9–17].

On-off intermittency, the phenomenon appearing in a
dynamical system when it passes through a bifurcation
point under effect of external stochastic time-dependent
forcing, attracts now a stable interest of investigators due
to its several intriguing properties. The most easily observ-
able of these latter is the specific time behavior of physical
quantities: the bursts of large amplitude randomly alter-
nate with the long quiet periods with near-zero amplitude.

On-off intermittency has an extremely important fea-
ture of power-law dependence of probability density of
burst amplitude [15–17]

F (x) ∼ xα−1, (1)
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where α is the scaling index. This expression holds in a
wide range of amplitudes A � x � 1, where A is the
magnitude of small external signal [8].

For small negative values of α and for vanishingly small
external signal (A→ 0) we get F (x)→ δ(x) due to diver-
gence of normalization constant in the F (x).

Now, when

A > A0 = exp(−1/|α|), (2)

it appears that the moments of distribution grow up to
the order of unity. Because for |α| � 1 the value of A0

is exponentially small, practically any physical value of
the signal results in a response of the order of unity. We
call this phenomenon hypersensitivity. A similar, but more
complex situation appears for small positive α.

In our previous work [8] we found, analytically and
numerically, that the simple stochastic system with on-
off intermittency, an overdamped Kramers oscillator with
multiplicative noise, exhibits such a scaling distribution,
and, as a result, demonstrates hypersensitivity to an ul-
trasmall time-dependent forcing.

One of the main conditions for hypersensitive behav-
ior of the system is a strong nonlinearity of the poten-
tial (see below). In the standard Kramers oscillator this
nonlinearity is of biquadratic type. However, most of the
real physical systems have a nonlinearity not of power-law
but (as a rule) of exponential type. Thus, in our circuit
we take an exponential nonlinear element and show an-
alytically that an oscillator modified by such a way still
exhibits noise-induced hypersensitivity to small signals.

Let us describe now an experimental realization of
overdamped oscillator with multiplicative noise. The basic
circuit is shown in Figure 1. Its key element is the resistor
with negative conductance G(t) which is controlled by the
voltage Vc(t). The resistor is designed using an operational
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Fig. 1. Electronic circuit described by equation (8). Diodes are
of type Si 1N914, operational amplifier is µA740, field-effect
transistor is 2N5114.

amplifier and a FET. The voltage Vc that controls the re-
sistor conductance is a sum of the constant bias Vc0 and
the noise vn(t). This latter is produced by noise generator
and has a white spectrum up to frequency about 30 kHz.

The input signal S(t) = Ae(t), where e(t) is the
square-wave zero-mean signal with frequency 0.5 Hz and
A is the amplitude, is injected into the system through
the resistor R. The static current-voltage characteristics
(CVC) of the circuit is shown in Figure 2. We see that for
V < V0 the slope of CVC is close to zero. An asymmetry
of CVC is caused by technological deviation of parameters
of the diodes. The Kirchhoff’s law for our circuit is:

S(t)− V (t)
R

= C
dV
dt

+ I1(V ) + I2(V ), (3)

where V (t) is the output voltage, CdV/dt is the current
through the capacitor, and I1(V ) is the current through
the nonlinear element (the diode bridge)

I1(V ) = I0(exp(bV )− exp(−bV )), b ∼ 1/V0. (4)

The current I2 through the negative resistance element
can be expressed as

I2(V ) = G(t)V,

G(t) = −|G0| − g(t),

g(t) = γvn(t), (5)

where g(t) is the conductance noise, with γ≈10−3(ΩV)−1.
Tuning G0 by the bias value Vc0, we set the low conduc-
tivity of the circuit (the small slope of the CVC). From
equation (3), introducing a dimensionless time, we get:

dV
dτ

= λV − f(V ) +Rγvn(τ)V + S(τ), (6)

τ = t/RC, λ = R(|G0| −R−1− 2bI0),

f(V ) = U(exp(bV )− exp(−bV )−2bV ), U = RI0.
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Fig. 2. Static current-voltage characteristics of the circuit. The
cutoff voltage is |V0| ≈ 2 V. The estimate of α is: α = −0.22
for V > 0 and α = −0.49 for V < 0.

The noise correlator is

〈vn(0)vn(τ)〉 = V 2
n exp(−ΓRC|τ |),

Vn ≈ 1.5 V, RC = 3× 10−4 s, Γ ≈ 2× 105 s−1. (7)

Earlier [8] we have demonstrated that for white noise ap-
proximation the phenomenon of hypersensitivity to small
signals takes place for small values of the parameter
α = 2λ/β2, where β2 is the white noise intensity. Then

we can derive from equation (6) β =
√

2
ΓRCRγVn ≈ 0.8.

From the slope of CVC we can obtain an estimate for λ.
Due to asymmetry of the CVC, for positive V this estimate
is λ = −0.07, and for negative V λ = −0.16. The values
of α are −0.22 and −0.49, respectively, and, as a result,
the signal gain factors (see Eq. (16) below) differ for the
positive and negative parts of the input.

Figure 3 displays an output voltage V (t) for the input
signal amplitude A = 3 mV. We see that the system re-
sponds to this small signal by bursts of the order of cutoff
voltage V0 = 2V.

Figure 4 displays the dependence of average gain fac-
tor K on the amplitude of input signal A obtained from
output power spectrum: K(A) =

√
SV (f0)∆f/A, where

SV (f0) is the spectral density for fundamental harmon-
ics of the signal, ∆f is the spectral bandwidth. From the
slope of this dependence we can obtain α = −0.2, close to
an estimate obtained from CVC.

Thus, we see that the simple stochastically modu-
lated circuit for small absolute values of parameter α
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Fig. 3. Output voltage V (t) for input square-wave signal S(t)
with amplitude A = 3 mV and frequency 0.5 Hz. The asym-
metry of V (t) arises from the asymmetry of current-voltage
characteristics in Figure 2. As a result, the signal gain factors
(see Eq. (16)) differ for the positive and negative parts of the
input.

10-3 10-2 10-1
1

10

100

K
  

A  (V)

Fig. 4. Average gain factor vs. amplitude of input square-
wave signal with frequency 0.5 Hz. The solid line is the depen-
dence (16) with |α| = 0.22.

demonstrates the noise-induced sensitivity to small time-
dependent signals.

We demonstrate also the presence of on-off intermit-
tency in our system.

The common fingerprint of on-off intermit-
tency is a power-law dependence of laminar length
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Fig. 5. Laminar length distribution for constant input signal
S(t) = E = −14 mV and laminarity threshold p = 0.1. The
solid line is the dependence (8).

distribution [11–14,17]

Plam(l) ∼ l−3/2, (8)

where l is the duration of laminar phase. For V (t) we
determine a laminar phase using the condition V (t) < pV0,
where p is the laminarity threshold.

Figure 5 presents Plam for constant input signal S(t) =
E = −14 mV and p = 0.1. The experiment shows a good
agreement with the dependence (8) (as it is for other
values of E and p).

Now we present an analytical treatment of our prob-
lem. The equation (6) that describes our circuit differs
from that of an overdamped Kramers oscillator in [8].
Therefore, we derive an expression for response of the
system (6) to small signal “from scratch”.

Physically, the system can be imagined as a Brown-
ian particle in time-dependent potential that chaotically
alternate between single-well and double-well form. The
stochastic Stratonovich-type equation of nonlinear oscil-
lator with multiplicative noise is:

dx
dt

= λx− f(x) + βξ(t)x+Ae(t) + σφ(t) (9)

where f(x) is the nonlinear function, ξ(t) and φ(t)
are the independent Gaussian white noise sources, e(t)
is the zero-mean square-wave signal of unit ampli-
tude. The case f(x) ∼ x3 was investigated in [1]. In
our experiment f(x) is f(V ) in equation (6). Solving



338 The European Physical Journal B

a Fokker-Planck equation

∂F

∂t
= − ∂

∂x

((
λ+

β2

2

)
x− f(x) +Ae(t)

)
F

+
1
2
∂2

∂x2
(β2x2 + σ2)F (10)

for the case (A, σ) � (λ, β, b, U) and using adiabatic ap-
proximation (the period of signal is taken much larger
than the characteristic time of establishing of stationary
probability density function (PDF) in the system) we ob-
tain an expression for PDF:

F (x, t) = N(x2 +
σ2

β2
)(α−1)/2

× exp
(

2Ae(t)
βσ

arctan
βx

σ
− 2
β2
Φ(x)

)
,

α =
2λ
β2
, Φ(x) =

∫ x

0

f(x)
x2

dx = Ub
∞∑
k=1

(bx)2k

k(2k + 1)!
· (11)

In the case of negligibly small additive noise (σ = 0)

F (x, t) = N |x|α−1θ
(
sign(Ae(t)x)

)
× exp

{
−2Ae(t)

β2x
− 2
β2
Φ(x)

}
, (12)

where θ is the Heaviside step function. One can obtain
from equation (12) the PDF of scaling type in a wide
interval A� |x| � 1:

F (x, t) ∼ |x|α−1sign(Ae(t)x). (13)

The normalization constant N for our case (|α| � 1 and
U/β2 ∼ 1) is

N =


α α > 0, z � 1,

1/ln
1
A

z � 1,

|α|A|α| α < 0, z � 1,

(14)

where z = |α|ln 1
A .

The power-law dependence of PDF is one of the fin-
gerprints of on-off intermittency [15–17]. The other char-
acteristic feature of equation (12) is its sensitivity to
the sign of the signal e(t). From equation (12) we get
for mean and mean square values taking for simplicity
β, U, b ∼ 1, |α| � 1 and, for instance, z � 1:

〈x(t)〉 ∼ e(t)/ln(1/A),

〈x2(t)〉 ∼ 1/ln(1/A). (15)

Then the gain factor is :

K =
〈x(t)〉
Ae(t)

∼
{

(Aln 1
A )−1 z � 1,

|α|/A1−|α| z � 1, α < 0.
(16)

From equation (16) we see that the gain factor K is very
large for small α and A, i.e., the system is hypersensitive
to small signal Ae(t).

To conclude, we enumerate the main conditions for
hypersensitive behavior of the model: i) large fluctuations
of the bifurcation parameter (the coefficient in the linear
term in Eq. (9)) (β2 � |λ|, i.e., |α| � 1); ii) sufficiently
strong nonlinearity of the potential; and iii) adiabaticity
of input signal, i.e., the period of signal should be much
larger than the system relaxation time (the time of estab-
lishing of stationary PDF). We managed to realize these
conditions in our experiment.
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